•••		Physics	Problem Sheet 5
.	Universidad	Biomedical Engineering	
U	Rey Juan Carlos	Course 2020 - 2021	Dynamics of systems of particles

- Two bodies, masses 500 and 1000 kg, move at the same speed, 180 km/h. Determine their respective 1. velocities after a frontal, inelastic collision Ans: 60 km/h
- An artillery shell is fired forming an angle of 45°, initial speed 30 m/s. It explodes into two equal-mass 2. fragments in the highest point of its trajectory. The first fragment continues in the direction of motion at velocity of 45 m/s. Determine what is the distance from firing point reached by the second fragment. **Ans**: 40,35 m from firing point
- 3. A body of mass m is on a horizontal plane at rest. Another body collides elastically with it at velocity V and it deviates an angle α . Calculate the velocities of both bodies after collision. Ans: $|\vec{v}_1| = V \cdot \cos \alpha$ with angle α ;

 $|\vec{v}_{2}| = V \cdot sen\alpha$ with angle -(90° - α)

The simple pendulum of the figure has a mass $m_1 = 20$ kg, and it is tied to a 4. rope of length 1,5 m. We leave this mass to fall down from position A. When it reaches position B, it collides elastically with other mass $m_2 = 25$ kg, initially at rest, no friction. Because of the collision, m1 bounces back and reaches point C, at height h. Determine: a) Velocity of m_1 at point B before collision, and the tension of the rope at that precise instant. b) Velocities of m_1 and m_2 after collision. c) Kinetic energy Ek lost by m_1 during collision. d) Height h.

Ans: a) v = 5, 42 m/s; T = 588 N; b) $v_1 = -0.60$ m/s; $v_2 = 4.82$ m/s; c) $\Delta Ek = -290.2$ J; h = 18.5 mm.

- 5. Consider a pulley with mass 10 kg and radius 10 cm. Two masses, $m_1 = 13$ kg and $m_2 = 7$ kg, hang from an inextensible and weightless rope. Both masses at rest. Let $g = 10 \text{ m/s}^2$ and the Moment of Inertia of the pulley ¹/₂ MR². Determine: a) Linear acceleration of the bodies and angular acceleration of the pulley; b) Kinetic energy of each body and the pulley after 2 secs. Ans.: a) 2,4 m/s², 24 rad/s²; b) 149,76 J, 80,64 J, 9,22 J
- The figure shows two identical doors seen from above. The same force F acts on the doors. The door A 6. rotates around an axis located in its leftmost edge. The door B rotates around an axis located in its middle point. The door A rotates a given angle after 3 secs (initially at rest). How much time takes the door B to rotate the same angle? $I_A = (1/3)Ml^2$, $I_B = (1/12)Ml^2$. Ans.: 2,12 s Axis

- 7. A cylinder $(I = 1/2 \cdot m \cdot R^2)$ rolls over a horizontal surface at speed v. Determine the work needed for stopping it **Ans.**: 3/4mv².
- 8. A solid sphere radius R and a solid cube are on top of a ramp, height H. The sphere rolls without slipping, the cube slides with no friction. The moment of inertia of the sphere is $I = 2/5 \cdot M \cdot R^2$. a) Calculate the velocities of the bodies when reaching the zero-level height. b) Determine which body arrives the first to the base of the ramp. Ans: $v_{sphere} = sqrt(10 \text{ g } H/7)$; $v_{cube} = sqrt(2gH)$ b) The cube arrives the first.

9. A person (mass 91kg) jumps into a moving boat (mass 510 kg) with another person already on board (mass 75 kg). Initial speed of the boat is 11 m/s. What is the speed of the boat after the jump? Ans: 9.52 m/s